正项数列an的前n项和sn,满足sn²-(n²+n-1)sn-(n²+n)=0(1)求an

问题描述:

正项数列an的前n项和sn,满足sn²-(n²+n-1)sn-(n²+n)=0(1)求an

Sn^2-(n^2+n+1)Sn-(n^2+n)=0
则(Sn-1)(Sn-(n^2+n))=0
而Sn≠1所以Sn=n^2+n
所以an=Sn-S(n-1)=n^2+n-(n-1)^2-(n-1)=2n[Sn - (n^2 + n)](Sn + 1) = 0 因为an 是正项数列 Sn = n^2 + n an = Sn - Sn-1 = 2n bn = (n + 1)/4n^2(n+2)^2 = 1/16 * [ 1/n^2 - 1/(n + 2)^2 ] Tn = 1/16 * ( 1 - 1/9 + 1/4 - 1/16 + 1/9 - 1/25 .......... + 1/(n-1)^2 - 1/(n + 1)^2 + 1/n^2 - 1/(n+2)^2 ) =1/16 * [ 1 + 1/4 -1/(n + 1)^2 - 1/(n+2)^2 ]