四边形ABCD为正方形,PD垂直平面ABCD,PD平行QA,QA=AD=1,且Vq-abcd=Vc-pqd.证明平面PQC垂直平面DCQ

问题描述:

四边形ABCD为正方形,PD垂直平面ABCD,PD平行QA,QA=AD=1,且Vq-abcd=Vc-pqd.证明平面PQC垂直平面DCQ

以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D-xyz;依题意有Q(1,1,0),C(0,0,1),P(0,2,0);则 DQ→=(1,1,0),DC→=(0,0,1),PQ→=(1,-1,0),所以 PQ→• DQ→=0,PQ→R...