如图,在平面直角坐标系中,A(-3,0),点C在y轴的正半轴上,BC∥x轴,且BC=5,AB交y轴于点D,OD=3/2. (1)求出C的坐标. (2)过A,C,B三点的抛物线与x轴交于点E,连接BE,若动点M从点A

问题描述:

如图,在平面直角坐标系中,A(-3,0),点C在y轴的正半轴上,BC∥x轴,且BC=5,AB交y轴于点D,OD=

3
2


(1)求出C的坐标.
(2)过A,C,B三点的抛物线与x轴交于点E,连接BE,若动点M从点A出发沿x轴正方向运动,同时动点N从点E出发,在直线EB上作匀速运动,运动速度为每秒1个单位长度,当运动时间t为多少时,△MON为直角三角形.

(1)∵BC∥x轴,
∴△BCD∽△AOD,

CD
OD
BC
AO

∴CD=
5
3
×
3
2
5
2

∴CO=
5
2
+
3
2

∴C点的坐标为(0,4).
(2)如图1,作BF⊥x轴于点F,则BF=4,
由抛物线的对称性知EF=3,
∴BE=5,OE=8,AE=11,
根据点N运动方向,分以下两种情况讨论:
①点N在射线EB上,
若∠NMO=90°,如图1,则cos∠BEF=
ME
NE
FE
BE

11−t
t
3
5

解得t=
55
8

若∠NOM=90°,如图2,则点N和G重合,
∵cos∠BEF=
OE
GE
FE
BE

8
t
3
5
,解得t=
40
3

∠ONM=90°的情况不存在.
②点N在射线EB的方向延长线上,
若∠NMO=90°,如图3,则cos∠NEM=cos∠BEF,
ME
NE
FE
BE

t−11
t
3
5
,解得t=
55
2

而∠NOM=90°和∠ONM=90°的情况不存在.
综上,当t=
55
8
、t=
40
3
或t=
55
2
时,△MON为直角三角形.