x1x2是方程x²-2x+a=0的两个实数根,且x1+2x2=3-根号21求x1,x2及a的值 2求x1³-3x1²+2x1+x2的值
问题描述:
x1x2是方程x²-2x+a=0的两个实数根,且x1+2x2=3-根号2
1求x1,x2及a的值 2求x1³-3x1²+2x1+x2的值
答
由根与系数的关系知道
x1+x2=2
又x1+2x2=3-√2
所以x2=1-√2,x1=1+√2
那么x1x2=1-2=-1=a
所以a=-1
x1³-3x1²+2x1+x2
=(1+√2)³-3(1+√2)²+2(1+√2)+(1-√2)
=(3+2√2)(-2+√2)+√2+3
=-2-√2+√2+3
=1
答
x1+x2=-b/a=2
x2=1-根号2
x1=2-(1-根号2)=1加根号2
x1x2=c/a=a
a=x1x2=-1
x²-2x-1=0
所以x1²-2x1-1=0
x1²=2x1+1
x1³=x1(2x1+1)=2x1²+x1
所以原式=2x1²+x1-3x1²+2x1+x2
=-x1²+3x1+x2
=-(2x1+1)+3x1+x2
=x1+x2-1
=2-1
=1
答
1、
x1+x2=2
x1+2x2=3-√2
所以x2=3-√2-2=1-√2
x1=2-x2=2-1+√2=1+√2
a=x1x2=(1-√2)(1+√2)=1-2=-1
2、
x1³-3x1²+2x1+x2
=x1(x1²-3x1+2)+x2
=x1(x1-1)(x1-2)+x2
=(1+√2)(√2)(-1+√2)+1-√2
=√2+1-√2
=1
答
1、x1+x2=2
x1+2x2=3-√2
故x1=√2+1,x2=1-√2
a=x1x2=-1
2、1