求函数y=-4cos²x+4sinx+5的最小值,并求出取得最小值时x的集合.
问题描述:
求函数y=-4cos²x+4sinx+5的最小值,并求出取得最小值时x的集合.
答
y= -4(cosx)^2+4sinx+5= -4*[1-(sinx)^2]+4sinx+5= 4(sinx)^2+4sinx+1=(2sinx+1)^2 ,所以,当 2sinx+1=0 即 sinx= -1/2 也即 x=2kπ+3π/2±π/3 时,y 有最小值 0 .因此 y 取最小值 0 时,x 的取值集合为 {x | ...