设f(x)=ax^3+bx^2+cx+d,(a

问题描述:

设f(x)=ax^3+bx^2+cx+d,(a

数学人气:371 ℃时间:2020-04-17 07:21:08
优质解答
f(x)=ax^3+bx^2+cx+d,在x=1处取得极值,有3a+2b+c=0,可知c大于0,a小于0,c=-3a-2b
因为ab/a>-3-2b/a
解得:-1因为其图像在x=m处切线斜率为-3a,所以3am^2+2bm+c=-3a由于该方程存在实根m,故△>=0
有△=4b^2+24ab≥0,b/a≥0或b/a≤-6
综上所述:0≤b/a<1
我来回答
类似推荐

f(x)=ax^3+bx^2+cx+d,在x=1处取得极值,有3a+2b+c=0,可知c大于0,a小于0,c=-3a-2b
因为ab/a>-3-2b/a
解得:-1因为其图像在x=m处切线斜率为-3a,所以3am^2+2bm+c=-3a由于该方程存在实根m,故△>=0
有△=4b^2+24ab≥0,b/a≥0或b/a≤-6
综上所述:0≤b/a<1