设f(x) g(x)在[a,b]连续, 证至少存在一点ξ∈(a,b), 使f(ξ)∫[b,ξ] g(x)dx=g(ξ)∫[ξ,a] f(x)dx
问题描述:
设f(x) g(x)在[a,b]连续, 证至少存在一点ξ∈(a,b), 使f(ξ)∫[b,ξ] g(x)dx=g(ξ)∫[ξ,a] f(x)dx
答
见下图,令h(y) = G(y)F(y),然后根据罗尔定理, 存在xi 使得h'(xi)= 0,原式得证