设向量a=(cos(a+b),sin(a+b)),b=(cos(a-b),sin(a-b)),且向量a+b=(4/5,3/5)
问题描述:
设向量a=(cos(a+b),sin(a+b)),b=(cos(a-b),sin(a-b)),且向量a+b=(4/5,3/5)
(1)求tan a
(2)求 2cos^(a/2)-3sina-1
——————————
√2sin(a+П/4)
答
(1)先去书上看看两角和与差的正弦余弦公式,代进去.
a+b=(cos(A+B)+cos(A-B),sin(A+B)+sin(A-B))
=(2cosAcosB,2sinAcosB)=(4/5,3/5)
所以tanA=(2sinAcosB)/(2cosAcosB)=(3/5)/(4/5)=3/4
(2)2cos^2(A/2)=cosA+1(二倍角余弦公式)
√2sin(A+П/4)=√2(sinAcosП/4+cosAsinП/4)=
√2*√2/2*(sinA+cosA)=sinA+cosA
所以原式=(cosA-3sinA)/(sinA+cosA)分数线上下同除以cosA
=(1-3tanA)/(tanA+1)=(1-3*3/4)/(3/4+1)=-5/7