已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F. 求证:BE+CF=EF.
问题描述:
已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F. 求证:BE+CF=EF.
答
证明:∵BD平分∠ABC,
∴∠EBD=∠DBC,
∵EF∥BC,
∴∠EDB=∠DBC,
∴∠EDB=∠EBD,
∴DE=BE,
同理CF=DF,
∴EF=DE+DF=BE+CF,
即BE+CF=EF.