己知数列{an}是首项a1=1/2,公比q=1/2的等比数列,设bn+2=3log1/2an,数列{Cn}满足Cn=an*bn.(1)...

问题描述:

己知数列{an}是首项a1=1/2,公比q=1/2的等比数列,设bn+2=3log1/2an,数列{Cn}满足Cn=an*bn.(1)...
己知数列{an}是首项a1=1/2,公比q=1/2的等比数列,设bn+2=3log1/2an,数列{Cn}满足Cn=an*bn.(1)求证:{bn}是等差数列;(2)求数列{Cn}的前n项和Sn;(3)若Cn《2m2+3m一4对一切正整数n都恒成立,求实数m的取值范围.

(1)an=(1/2)^n 3log1/2an=3 bn=3n-2
(2)sn=(1/2)*1+(1/2)^2*4+(1/2)^3*7+...+(1/2)^n*(3n-2)
2sn=1+(1/2)^1*4+(1/2)^2*7+...+(1/2)^(n-1)*(3n-2)
(2-1)sn=1-3[(1/2)^1+(1/2)^2+...+(1/2)^(n-1)]-(1/2)^n(3n-2)
=(8-3n)(1/2)^n-2
(3)(1/2)^n*(3n-2)>=(1/2)^(n+1)*(3n+1)且(1/2)^n*(3n-2)>=(1/2)^(n-1)*(3n-5)
得(Cn)max=C2=1
只需使2m^2+3m-4>=1
解得m=1