求二重积分∫∫根号下(R^2 -X^2-Y^2)dxdy,其中积分区域D为圆周X^2+Y^2=RX.
问题描述:
求二重积分∫∫根号下(R^2 -X^2-Y^2)dxdy,其中积分区域D为圆周X^2+Y^2=RX.
答
极坐标标
∫∫ √(R²-x²-y²) dxdy
=∫∫ r√(R²-r²) drdθ
=∫[-π/2→π/2] dθ∫[0→Rcosθ] r√(R²-r²) dr
=(1/2)∫[-π/2→π/2] dθ∫[0→Rcosθ] √(R²-r²) d(r²)
=-(1/2)(2/3)∫[-π/2→π/2] (R²-r²)^(3/2) |[0→Rcosθ] dθ
=(1/3)∫[-π/2→π/2] (R³-R³|sinθ|³) dθ
=(2R³/3)∫[0→π/2] (1-sin³θ) dθ
=(2R³/3)[∫[0→π/2] 1 dθ - ∫[0→π/2] sin³θ dθ]
=(2R³/3)[π/2 + ∫[0→π/2] sin²θ d(cosθ)]
=(2R³/3)[π/2 + ∫[0→π/2] (1-cos²θ) d(cosθ)]
=(2R³/3)[π/2 + θ - (1/3)cos³θ] |[0→π/2]
=(2R³/3)[π/2 + π/2 - 0]
=2πR³/3
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.你错了,答案是1/3R^3(π-4/3)倒数第三步时出错了,从倒数第四步开始=(2R³/3)[π/2 + ∫[0→π/2] (1-cos²θ) d(cosθ)]=(2R³/3)[π/2 + cosθ - (1/3)cos³θ]|[0→π/2]=(2R³/3)[π/2 -1 + 1/3]=(2R³/3)[π/2 - 2/3]=(R³/3)[π - 4/3]