∫∫(x^2+y)dxdy,其中D为直线y=x,x=2和双曲线xy=1所围成的区域, 计算二重积分.
问题描述:
∫∫(x^2+y)dxdy,其中D为直线y=x,x=2和双曲线xy=1所围成的区域, 计算二重积分.
答
∫∫(D) (x² + y) dxdy
= ∫(1→2) dx ∫(1/x→x) (x² + y) dy
= ∫(1→2) [x²y + y²/2] |(1/x→x) dx
= ∫(1→2) [x³ + x²/2 - 1/(2x²) - x] dx
= [x⁴/4 + x³/6 - x²/2 + 1/(2x)] |(1→2)
= 19/6