一个正方形ABCD边长为10cm.以其边长为半径,四个端点为圆心分别作4个扇形,求阴影部分面积

问题描述:

一个正方形ABCD边长为10cm.以其边长为半径,四个端点为圆心分别作4个扇形,求阴影部分面积
扇形成的四个弧分别是弧AB 弧AC 弧BC 弧CD
抱歉,阴影就是正方形内形成的两个相交的椭圆以外的部分。

解这个题的关键在于看图,其实很好解
连接弧线交点与各顶点,可求出三角形的面积,与两个小拱形的面积,那么,三角形面积—两个小拱形之和,就得出一个小阴影的面积,然后再乘以4就得出了阴影的面积了.抱歉请说清楚一点,这是小学程度的习题。先看下图,等下回来把具体步骤给你,有点事,抱歉了!由题意知:三角形BEC为等腰三角形,所以过E点向BC引的垂线的交点G平分BC所以BG=5则EF=BG=5 由此可知:角EAB=30度,EF=5 所以扇形ABE的面积为:30度/360度*π*100=25π/3三角形ABE的面积为:25所以拱形BE的面积为:25π/3-25 三角形BEC的面积为:10*5/2*1/2=25/2 一个小阴影面积为:25/2-(25π/3-25)*2=125/2-50π/3所以阴影面积为:(125/2-50π/3)*4~40.8平方厘米