如图①,在平面直角坐标系中,已知△ABC是等边三角形,点B的坐标为(12,0),动点P在线段AB上从点A向点B以每秒 个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在x轴上.

问题描述:

如图①,在平面直角坐标系中,已知△ABC是等边三角形,点B的坐标为(12,0),动点P在线段AB上从点A向点B以每秒 个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在x轴上.
(1)当t为何值时,点M与点O重合;
(2)求点P坐标和等边△PMN的边长(用t的代数式表示);
(3)如果取OB的中点D,以OD为边在△AOB内部作如图②所示的矩形ODEF,点E在线段AB上.设等边△PMN和矩形ODEF重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
哪里的中考题啊?
我想问 这是哪儿的

(1)点M与点O重合.∵△ABC是等边三角形,∴∠ABO=30°,∠BAO=60°.由OB=12,∴AB=8 ,AO=4 .∵△PON是等边三角形,∴∠PON=60度.∴∠AOP=60度.∴AO=2AP,即4 =2 t,解得t=2.∴当t=2时,点M与点O重合.(2)如图②,过...