如图①,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H、动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速

问题描述:

如图①,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H、动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,图②所示为点P在线段AB上运动时,△PAC的面积T与运动时间t之间关系的图象.


(1)求点A的坐标直线AC的解析式;
(2)求出点P在剩余时间内运动时,△PAC的面积T与运动时间t之间关系,并在图②中画出相应的图象;
(3)连接BM,如图③,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(4)当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

(1)过C点作AB的高,与AB的延长线交于D点,由右图可知,运动时间为2.5秒,AP=2.5×2=5,又面积为10,所以,CD=2×105=4,在Rt△CBD中,BD=BC2−CD2=3故AH=AB-BH=OC-BH=DH-BH=BD=3∴A(-3,4);将A(-3,4),C(5...