定义在R上的函数f(x)为奇函数,且函数f(3x+1)的周期为2,若f(1)=2010,则f(2009)+f(2010)的值等于( ) A.0 B.-2010 C.2010 D.4019
问题描述:
定义在R上的函数f(x)为奇函数,且函数f(3x+1)的周期为2,若f(1)=2010,则f(2009)+f(2010)的值等于( )
A. 0
B. -2010
C. 2010
D. 4019
答
∵函数f(3x+1)的周期为2,
∴f[3(x+2)+1]=f[(3x+1)+6]=f(3x+1),
∴函数f(x)的周期为6;
又函数f(x)为奇函数,f(1)=2010,
所以,f(0)=0,f(-1)=-2010,
又∵2009=334×6+5,2010=335×6,
∴f(2009)=f(5)=f(6-1)=f(-1)=-f(1)=-2010,
f(2010)=f(0)=0,
∴f(2009)+f(2010)=-2010.
故选B.