已知定义在R上的函数f(x)为奇函数,且函数f(2x+1)的周期为5,若f(1)=5,则f(2009)+f(2010)的值为(  ) A.5 B.1 C.0 D.-5

问题描述:

已知定义在R上的函数f(x)为奇函数,且函数f(2x+1)的周期为5,若f(1)=5,则f(2009)+f(2010)的值为(  )
A. 5
B. 1
C. 0
D. -5

∵函数f(2x+1)的周期是5
∴[2(x+5)+1]=f(2x+1)
即f(2x+11)=f(2x+1)
即f(y+10)=f(y)
故函数f(x)的周期是10
∴f(2009)=f(-1),f(2010)=f(0)
∵函数f(x)为定义在R上的奇函数
∴f(0)=0,f(-1)=-f(1)=-5
∴f(2009)+f(2010)的值为-5.
故选D