如图,A、B、C分别为x2a2+y2b2=1(a>b>0)的顶点与焦点,若∠ABC=90°,则该椭圆的离心率为(  ) A.−1+52 B.1-22 C.2-1 D.22

问题描述:

如图,A、B、C分别为

x2
a2
+
y2
b2
=1(a>b>0)的顶点与焦点,若∠ABC=90°,则该椭圆的离心率为(  )
A.
−1+
5
2

B. 1-
2
2

C.
2
-1
D.
2
2

|AB|2=a2+b2,|BC|2=b2+c2,|AC|2=(a+c)2.∵∠ABC=90°,∴|AC|2=|AB|2+|BC|2,即(a+c)2=a2+2b2+c2,∴2ac=2b2,即b2=aC、∴a2-c2=aC、∴ac-ca=1,即1e-e=1.解之得e=−1±52,又∵e>0,∴e=−1+52.故选A....