已知圆M:(x+cos)2+(y-sin)2=1...

问题描述:

已知圆M:(x+cos)2+(y-sin)2=1...
已知圆M:(x+cosA)2+(y-sinA)2=1,直线l:y=kx,下面四个命题: 对任意实数k与A,直线l和圆M相切; 对任意实数k与A,直线l和圆M有公共点; 对任意实数A,必存在实数k,使得直线l与和圆M相切 (D)对任意实数k,必存在实数A,使L与M相切
过程
没有具体的计算证明吗,讨论我也会啊

圆半径1、恒过(0,0)点
所以:对任意实数k与A,直线l和圆M相切; 错
对任意实数k与A,直线l和圆M有公共点;对
对任意实数A,必存在实数k,使得直线l与和圆M相切 错,当圆与y轴相切就没有
对任意实数k,必存在实数A,使L与M相切 对