数列:已知an=n2^(n-1)求Sn

问题描述:

数列:已知an=n2^(n-1)求Sn

sn=a1+a2+a3+……+an
=1*2^0+2*2+3*2^2+4*2^3+……+n2^(n-1)
2sn=1*2+2*2^2+3*2^3+……+n*2^n
两式相减

-sn=1+2+2^2+2^3+……+2^(n-1)-n*2^n
=1*(1-2^n)/(1-2)-n*2^n
=2^n-1-n2^n
所以
sn=(n-1)2^n-1