如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点P为BC边上一点,PE⊥AB于点E,PF⊥DC于点F,BG⊥CD于点G,试说明PE+PF=BG.

问题描述:

如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点P为BC边上一点,PE⊥AB于点E,PF⊥DC于点F,BG⊥CD于点G,试说明PE+PF=BG.

证明:过点P作PH⊥BG,垂足为H,
∵BG⊥CD,PF⊥CD,PH⊥BG,
∴∠PHG=∠HGC=∠PFG=90°,
∴四边形PHGF是矩形,
∴PF=HG,PH∥CD,
∴∠BPH=∠C,
在等腰梯形ABCD中,∠PBE=∠C,
∴∠PBE=∠BPH,
又∠PEB=∠BHP=90°,BP=PB,
在△PBE和△BPH中

∠PEB=∠BHP=90°
∠PBE=∠BPH
BP=PB

∴△PBE≌△BPH(AAS),
∴PE=BH,
∴PE+PF=BH+HG=BG.