已知命题p:存在x∈[-2,-1],x²≥a,命题q:存在x∈Rx²-2ax+2-a=0,则p,q中至少有一个是假命题的充要条件是
问题描述:
已知命题p:存在x∈[-2,-1],x²≥a,命题q:存在x∈Rx²-2ax+2-a=0,则p,q中至少有一个是假命题的充要条件是
答
p,q中至少有一个是假命题的反面是都是真命题
p:存在x∈[-2,-1],x²≥a
∴1≥a
q:存在x∈R,x²-2ax+2-a=0
Δ=4a²-4(2-a)≥0
a²+a-2≥0
(a+2)(a-1)≥0
a≥1或a≤-2
取交集a≤-2或a=1
∴p,q中至少有一个是假命题的充要条件是
a>-2且a≠1
如果您认可我的回答,请点击“采纳为满意答案”,祝学习进步!