如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于E,BF∥DE,交AG于F. (1)求证:AF-BF=EF;
问题描述:
如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于E,BF∥DE,交AG于F. (1)求证:AF-BF=EF;
答
证明:
∵DE⊥AG,BF∥DE
∴∠BGA=∠EAD,
∵∠ABF=90°-∠GBF=∠BGA
∴∠DAE=∠ABF
∴∠BAF=∠ADE
AB=AD
∴Rt△AED≌Rt△AFB
∴AE=BF
∵AF-AE=EF
∴AF-BF=EF