设四棱锥P-ABCD中底面ABCD是边长为a的正方形,且PD=a,PA=PC=根号2a,则此四棱锥的内切球的最大半径长为多少

问题描述:

设四棱锥P-ABCD中底面ABCD是边长为a的正方形,且PD=a,PA=PC=根号2a,则此四棱锥的内切球的最大半径长为多少

a²=r×﹙2+√2﹚a [=2S] ,r=a/﹙2+√2﹚≈0.2929a