三角形ABC,已知BD、CE分别平分角ABC、ACB,AM垂直CE于M,AN垂直BD于N.求证MN=1/2(AB+AC-BC)
问题描述:
三角形ABC,已知BD、CE分别平分角ABC、ACB,AM垂直CE于M,AN垂直BD于N.求证MN=1/2(AB+AC-BC)
答
证明:延长AM、AN分别交BC于点P、Q,
∵MC是∠ACB的平分线,AM⊥CE
∴AM=MP AC=PC
同理可得:AP=PQ AN=NQ
∵AM=MP AN=NQ
∴MN是△APQ的中位线
∴MN=1/2PQ
又∵PQ=PC+BQ-BC=AB+AC-BC
∴MN=1/2(AB+AC-BC)