在三角形ABC中,求证(1)sinA^2+sinB^2-sinC^2=2sinAsinBcosC (2)sinA+sinB-sinC

问题描述:

在三角形ABC中,求证(1)sinA^2+sinB^2-sinC^2=2sinAsinBcosC (2)sinA+sinB-sinC

证明:(1)
左式=sin²A+sin²B-sin²(180-A-B)
=sin²A+sin²B-sin²(A+B)
=sin²A+sin²B-(sinAcosB+cosAsinB)²
=sin²A-sin²Acos²B+sin²B-cos²Asin²B-2sinAcosBcosAsinB
=sin²A(1-cos²B)+sin²B(1-cos²A)-2sinAcosAsinBcosB
=2sin²Asin²B-2sinAcosAsinBcosB
右式=2sinAsinBcos(180-A-B)
=-2sinAsinBcos(A+B)
=-2sinAsinB(cosAcosB-sinAsinB)
=2sin²Asin²B-2sinAcosAsinBcosB
因为左式=右式
所以等式成立
还需要证明,