如何极限的定义证明3n+2/2n+1的极限等于3/2(趋近于无穷)
问题描述:
如何极限的定义证明3n+2/2n+1的极限等于3/2(趋近于无穷)
答
证明:任给正数t>0,要使│(3n+2)/(2n+1)-3/2│N总有│(3n+2)/(2n+1)-3/2│
如何极限的定义证明3n+2/2n+1的极限等于3/2(趋近于无穷)
证明:任给正数t>0,要使│(3n+2)/(2n+1)-3/2│N总有│(3n+2)/(2n+1)-3/2│