求极限lim x→∞ [1+x/√(1+x^2)]/[x+√(1+x^2)]

问题描述:

求极限lim x→∞ [1+x/√(1+x^2)]/[x+√(1+x^2)]

答:
lim(x→∞) [ 1+x / √(1+x^2) ] / [x+√(1+x^2)]
=lim(x→∞) [1/√(1+x^2)]* [ √(1+x^2) +x ] / [x+√(1+x^2)]
=lim(x→∞) 1/√(1+x^2)
=0