数列拆项求和

问题描述:

数列拆项求和
已知数列{an}的通项是an=1/[n*(n+1)*(n+2)} 求前n项和
如何拆项啊?

令1/[n*(n+1)*(n+2)]=x/n+y/(n+1)+z/(n+2)=[x(n^2+3n+2)+y(n^2+2n)+z(n^2+n)]/n*(n+1)*(n+2)=[(2x+y+z)n^2+(3x+2y+z)n+2x]/n*(n+1)*(n+2)比较分子的系数:2x+y+z=03x+2y+z=02x=1x=1/2;y=-1/2;z=-1/2