已知▲abc中,b(-4,0)c(4,0),ab,bc,ac成等差数列,则点a的轨迹方程是多少
问题描述:
已知▲abc中,b(-4,0)c(4,0),ab,bc,ac成等差数列,则点a的轨迹方程是多少
答
AB,BC,AC成等差数列,则2BC=AB+AC=2*8=16
所以,A的轨迹是以B,C为焦点的椭圆.
AB+AC=2a=16,a=8
c=4,则b^2=a^2-c^2=48
故方程是x^2/64+y^2/48=1,(x不=8或-8)