已知椭圆C;x2/a2+y2/b2=1(a>b>0)的右焦点为F(1,0),且点(-1,根号2/2)在椭圆上,已知点Q(四分之五,0),动直线l过点F,且l与椭圆交于A,B两点,证明QA向量乘QB向量为定值.
问题描述:
已知椭圆C;x2/a2+y2/b2=1(a>b>0)的右焦点为F(1,0),且点(-1,根号2/2)在椭圆上,
已知点Q(四分之五,0),动直线l过点F,且l与椭圆交于A,B两点,证明QA向量乘QB向量为定值.
答
由题意知a^2-b^2=1 ,将点(-1,√2/2)代入椭圆方程得1/a^2+1/2b^2=1
解得,椭圆方程为 x^2/2+y^2=1
设点A(x1,y1),B(x2,y2),则QA=(x1-5/4,y1),QB=(x2-5/4,y2)
(1)若直线l斜率为零,点A,B分别为 (-√2,0)(√2,0)
此时向量之积为-7/16
(2)若直线斜率不为0,则设直线方程为x=ky+1
与椭圆方程联立,得,(k^2+2)y^2+2ky-1=0
则有y1+y2=-2k/(k^2+2) y1·y2=-1/(k^2+2)
则x1+x2=k(y1+y2)+2 x1·x2=k^2y1·y2+k(y1+y2)+1
则有,QA·QB=(k^2+1)y1·y2-k/4(y1+y2)+1/16
=-(k^2+1)/(k^2+2)+k/4·2k/(k^2+2)+1/16
=-7/16
综上所述,两向量之积为定值,-7/16