已知命题p所有x属于【1,2】,x^2-a》0,命题q存在x属于R,x^2+2ax+2-a=0,若两命题都真,求a的范围?

问题描述:

已知命题p所有x属于【1,2】,x^2-a》0,命题q存在x属于R,x^2+2ax+2-a=0,若两命题都真,求a的范围?

两命题都真命题p为真x^2-a≥0在[1,2]上恒成立故a≤{x^2}min=1(即a≤x^2的最小值)即a≤1命题q为真存在x属于R,x^2+2ax+2-a=0那么Δ=(2a)^2-4(2-a)=4a^2+4a-8≥0故a≤-2或a≥1两者取交集得a≤-2或a=1即a的范围是{a|a≤-...