已知函数y=loga(x+3)-1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则1m+2n的最小值为(  ) A.3 B.3+22 C.4 D.8

问题描述:

已知函数y=loga(x+3)-1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则

1
m
+
2
n
的最小值为(  )
A. 3
B. 3+2
2

C. 4
D. 8

∵x=-2时,y=loga1-1=-1,
∴函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点(-2,-1)即A(-2,-1),
∵点A在直线mx+ny+1=0上,
∴-2m-n+1=0,即2m+n=1,
∵mn>0,
∴m>0,n>0,

1
m
+
2
n
=
2m+n
m
+
4m+2n
n
=2+
n
m
+
4m
n
+2≥4+2•
n
m
4m
n
=8,
当且仅当m=
1
4
,n=
1
2
时取等号.
故选D.