设锐角三角形ABC的内角A、B、C的对边分别为a、b、c.且bcosC=(2a-c)cosB.
问题描述:
设锐角三角形ABC的内角A、B、C的对边分别为a、b、c.且bcosC=(2a-c)cosB.
求.角B的大小?
求sinA+sinC的取值范围?
答
角B为60度,sinA+sinB范围是(1.根号3)1、通过bcosC=(2a-c)cosB利用余弦定理把cosC和cosB代进上面的公式,可以得到ac=a*a+c*c-b*b可以直接得到cosB=0.52、通过1知道sinA+sinC=sinA+sin(120-A)化简得到位:(根号3)...