设{an}是等比数列,公比q=根号2,Sn为{an}的前n项和.记Tn=(17Sn-S2n)/a(n+1),此处(n+1)为下标,

问题描述:

设{an}是等比数列,公比q=根号2,Sn为{an}的前n项和.记Tn=(17Sn-S2n)/a(n+1),此处(n+1)为下标,
n属于N+.设Tn0为数列{Tn}的最大项,则n0=?
有过程和答案

设{an}为等比数列,公比q=根号2,Sn为{an}前n项和
可得 a(n+1)=a1*2^(n/2)
Sn=a1*[1-2^(n/2)]/(1-√2)
S2n=a1*[1-2^n]/(1-√2)
Tn=(17Sn-S2n)/a(n+1)
化简后
=[16-17*2^(n/2)+2^n]/(1-√2)*2^(n/2)
=-(√2+1)(16/2^(n/2)-17+2^(n/2))
由均值不等式
16/2^(n/2)-17+2^(n/2)≥-9 (n=4时等号成立)
故原式=-(√2+1)(16/2^(n/2)-17+2^(n/2))
≤9(√2+1)
Tn0=9(√2+1) n0=4