三角形ABC中,tan(A+B)/2=sinC则C=?
问题描述:
三角形ABC中,tan(A+B)/2=sinC则C=?
答
因为sinC=sin(π-A-B)=sin(A+B)=[2tan(A+B)/2]/[1+tan^2(A+B)/2],
而tan(A+B)/2=sinC
所以 [2tan(A+B)/2]/[1+tan^2(A+B)/2]=tan(A+B)/2
1.tan(A+B)/2=0,
A,B为三角形内角,所以不可能!
2.tan(A+B)/2≠0
两边同除以tan(A+B)/2,得
[2/[1+tan^2(A+B)/2]=1
tan^2(A+B)/2=1 取tan(A+B)/2=1
所以(A+B)/2=π/4
(A+B)=π/2
从而
C=π/2.