设数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立,记bn=4+an1−an(n∈N*). (I)求数列{bn}的通项公式; (II)记cn=5/bn−4,求数列{cn}的前n项和为Tn.

问题描述:

设数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立,记bn

4+an
1−an
(n∈N*).
(I)求数列{bn}的通项公式;
(II)记cn
5
bn−4
,求数列{cn}的前n项和为Tn

(I)∵an=5Sn+1,
∴当n=1时,a1=5a1+1,
a1=−

1
4

当n≥2时,an=5Sn+1,an-1=5Sn-1+1,
两式相减,an-an-1=5an,即an=−
1
4
a
n−1

∴数列{an}成等比数列,其首项a1=−
1
4
an-1
∴数列{an}成等比数列,其首项a1=-
1
4
,公比是q=-
1
4

an=(−
1
4
)n

bn
4+(−
1
4
)n
1−(−
1
4
)n

(Ⅱ)由(Ⅰ)知bn=4+
5
(−4)n−1

bn−4=
5
(−4)n−1

cn
5
bn−4
−(−4)n−1

Tn
−4[(1−(−4)n]
1−(−4)
−n

=
4
5
(−4)n−n−
4
5