设数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立,记bn=4+an1−an(n∈N*). (I)求数列{bn}的通项公式; (II)记cn=5/bn−4,求数列{cn}的前n项和为Tn.
问题描述:
设数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立,记bn=
(n∈N*).4+an
1−an
(I)求数列{bn}的通项公式;
(II)记cn=
,求数列{cn}的前n项和为Tn. 5
bn−4
答
(I)∵an=5Sn+1,
∴当n=1时,a1=5a1+1,
∴a1=−
,1 4
当n≥2时,an=5Sn+1,an-1=5Sn-1+1,
两式相减,an-an-1=5an,即an=−
an−1,1 4
∴数列{an}成等比数列,其首项a1=−
an-1,1 4
∴数列{an}成等比数列,其首项a1=-
,公比是q=-1 4
,1 4
∴an=(−
)n,1 4
∴bn=
.4+(−
)n
1 4 1−(−
)n
1 4
(Ⅱ)由(Ⅰ)知bn=4+
,5 (−4)n−1
bn−4=
,5 (−4)n−1
∴cn=
−(−4)n−1,5
bn−4
∴Tn=
−n−4[(1−(−4)n] 1−(−4)
=
(−4)n−n−4 5
.4 5