已知等差数列{an}的前n项和为Sn=n^2+2n,(n∈+N),(1)求通项an (2)记bn=an×3^n,求数列{bn}的前n项和Tn.
问题描述:
已知等差数列{an}的前n项和为Sn=n^2+2n,(n∈+N),
(1)求通项an (2)记bn=an×3^n,求数列{bn}的前n项和Tn.
答
(1)an=Sn-Sn-1=n^2+2n-((n-1)^2+2(n-1))=2n+1(2)由(1)得该数列是3为底公差为2的等差数列所以bn=(2n+1)*3^nTn=(2*1+1)*3+(2*2+1)*3^2+.+(2n+1)*3^n而3Tn=(2*1+1)*3^2+(2*2+1)*3^3+.+(2n+1)...