设y=y(x)由方程cos(x+y)+y=1确定,求dy/dx
问题描述:
设y=y(x)由方程cos(x+y)+y=1确定,求dy/dx
答
对两边求导:[-sin(x+y)](1+dy/dx)+dy/dx=0 -sin(x+y)-[sin(x+y)]dy/dx+dy/dx=0 dy/dx=[sin(x+y)]/[1-sin(x+y)]
设y=y(x)由方程cos(x+y)+y=1确定,求dy/dx
对两边求导:[-sin(x+y)](1+dy/dx)+dy/dx=0 -sin(x+y)-[sin(x+y)]dy/dx+dy/dx=0 dy/dx=[sin(x+y)]/[1-sin(x+y)]