设y=f(x)由方程2y^3-2y^2+2xy-x^2=1所确定,试求y=f(x)的极值.
问题描述:
设y=f(x)由方程2y^3-2y^2+2xy-x^2=1所确定,试求y=f(x)的极值.
答
求导得:6y²y'-4yy'+2y+2xy'-2x=03y²y'-2yy'+y+xy'-x=0y‘(3y²-2y+x)=x-yy'=(x-y)/(3y²-2y+x)极值,则:y'=0,得:x=y把y=x代入方程:2y³-2y²+2xy-x²=1得:2x³-2x²+2x...极值应该要判断点两侧的导数异号啊?