已知sinα,cosα是方程2x²-x+a=0的两个根,求下列各值

问题描述:

已知sinα,cosα是方程2x²-x+a=0的两个根,求下列各值
sinαcosα
1/sinα+1/cosα
sin四次方α+cos四次方α
sin³α+cos³α

因为 sina,cosa是方程2x²-x + a = 0的两个根
由韦达定理可知:
sina + cosa = 1/2 sinacosa = a/2
所以 sinacosa = a/2
1/sina + 1/cosa = (sina + cosa)/sinacosa = (1/2)/(a/2) = 1/a
sin^4 a +cos^4 a = (sin²a + cos²a)²-2sin²acos²a
= 1²-2(sinacosa)²
= 1 -2(a/2)²
= 1 - a²/2
sin³a+cos³a = (sina + cosa)(sin²a -sinacosa + cos²a)
= (1/2)(1-a/2)
= 1/2 - a/4