设F(x)=lg[(1+2^x+a*4^x)/2]其中a∈R,若当x(-∞,1]时,f(x)有意义,求a的取值范围.

问题描述:

设F(x)=lg[(1+2^x+a*4^x)/2]其中a∈R,若当x(-∞,1]时,f(x)有意义,求a的取值范围.

F(x)=lg[(1+2^x+a*4^x)/2],即1+2^x+a·4^x>0→a>(-1)/(4^x)-1/(2^x),设1/(2^x)=y,即有a>-y^2-y=-(y+1/2)^2+1/4,又x∈(-∞,1]且在此区间内都要f(x)有意义,所以由a>-y^2-y=-(y+1/2)^2+1/4得a>1/4....