设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( ) A.λ1=0 B.λ2=0 C.λ1≠0 D.λ2≠0
问题描述:
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为
,α1
,则α2
,A(α1
+α1
)线性无关的充分必要条件是( )α2
A. λ1=0
B. λ2=0
C. λ1≠0
D. λ2≠0
答
法一:令:k1α1+k2A(α1+α2)=0,有:k1α1+k2λ1α1+k2λ2α2=0,即:(k1+k2λ1)α1+k2λ2α2=0,由于α1,α2线性无关,于是有:k1+k2λ1=0k2λ2=0,当λ2≠0时,显然有k1=0,k2=0,此时:α1,A(α1+α2...