设数列{an}的前n项和为Sn=4/3an-1/3×2n+1+2/3(n=1,2,3…),求首项a1和通项an.

问题描述:

设数列{an}的前n项和为Sn=

4
3
an-
1
3
×2n+1+
2
3
(n=1,2,3…),求首项a1和通项an

∵数列{an}的前n项和为Sn=43an-13×2n+1+23(n=1,2,3…),∴当n=1时,a1=S1=43a1−13×22+23,解得a1=2.当n≥2时,an=Sn-Sn-1=43an-13×2n+1+23-(43an−1−13×2n+23),化为an=4an−1+2n,化为an+2n=4(an−1+2n...