已知双曲线x²/4-y²/b²=1的右焦点F抛物线y²=12x的焦点重合则过该双曲线的右焦点F做其渐近线的垂线,垂足为M,则点M的纵坐标为多少?
问题描述:
已知双曲线x²/4-y²/b²=1的右焦点F抛物线y²=12x的焦点重合则过该双曲线的右焦点F做其渐近线的垂线,垂足为M,则点M的纵坐标为多少?
答
抛物线的焦点:2p=12 所以焦点为p/2=3又双曲线焦点C与抛物线焦点重合,所以c=3 c^2=9b^2=c^2-a^2=9-4=5b=根号5 a=2所以双曲线的渐近线方程为:y=(根号5)*x/2 或 y=(-根号5)*x/2设M的纵坐标为m 过M点作垂直于X轴的直线...