f(x)在x0处可导,且f'(x0)=2,则当x无限趋近于0时,[f(x0+x)-f(x0-3x)]/x=

问题描述:

f(x)在x0处可导,且f'(x0)=2,则当x无限趋近于0时,[f(x0+x)-f(x0-3x)]/x=

[f(x0+x)-f(x0-3x)]/x=f(x0+x)/x - f(x0-3x)/x = f(x0+x)/x + 3*f(x0-3x)/(-3x) = 2 +3 * 2 = 8
主要是把方程给化简,需要仔细看书里极限的定义就很好理解了.