若函数y=f(x)在点x0的某邻域内有连续的三阶导数,且f(x)的一阶和二阶导数为0,三阶导数不为0,则X0为什么不是f(X)的极值点?
问题描述:
若函数y=f(x)在点x0的某邻域内有连续的三阶导数,且f(x)的一阶和二阶导数为0,三阶导数不为0,则X0为什么不是f(X)的极值点?
答
f(x)在x0的邻域内泰勒展开,有:
y=f(x0)+f'(x0)(x-x0)+f"(x0)(x-x0)^2/2!+f"'(x0)(x-x0)^3/3!+.
因为f'(x0)=f"(x0)=0,所以
y=f(x0)+f"'(x0)(x-x0)^3/3!+.
当x=x0+h时,y-f(x0)≈ f"'(x0) *h^3/3!
当x=x0-h时,y-f(x0)≈-f"'(x0)* h^3/3!
因为f"'(x0)不为0,所以上述x0左右邻域内y-f(x0)的符号是相反的,所以f(x0)不可能是极值点.