二阶导函数连续可推出三阶可导吗?我是从一道题中想到的这个问题,设函数f(x)满足关系式f''(x)+[f'(x)]^2=x,且f'(0)=0,则:点(0,f(0))是曲线y=f(x)的拐点给出的解题步骤是:f''(0)=0,f''(x)可导,f'''(x)=1-2f'(x)f''(x),f'''(0)=1>0【我的疑问】:题目中没有说3阶可导,为什么解题里直接可以求3阶导数呢?是因为已知给出的是f''(x)的关系式(关于x,而不是某一个x0点),所以表明2阶导函数连续?继而由2阶导函数连续可推出3阶可导吗?

问题描述:

二阶导函数连续可推出三阶可导吗?
我是从一道题中想到的这个问题,
设函数f(x)满足关系式f''(x)+[f'(x)]^2=x,且f'(0)=0,则:点(0,f(0))是曲线y=f(x)的拐点
给出的解题步骤是:
f''(0)=0,f''(x)可导,f'''(x)=1-2f'(x)f''(x),f'''(0)=1>0
【我的疑问】:题目中没有说3阶可导,为什么解题里直接可以求3阶导数呢?是因为已知给出的是f''(x)的关系式(关于x,而不是某一个x0点),所以表明2阶导函数连续?继而由2阶导函数连续可推出3阶可导吗?