{an}为等比数列,an>0,q≠1,lga2是1+lga4的等差中项,且a1a2a3=1.(1)求通项公式.(2)设bn=1/n(3
问题描述:
{an}为等比数列,an>0,q≠1,lga2是1+lga4的等差中项,且a1a2a3=1.(1)求通项公式.(2)设bn=1/n(3
(2)设bn=1/n(3-lgan),Tn=b1+b2+……+bn,求证Tn<1.
前面写错了,lga2是lga1和1+lga4的等差中项
答
(1)依题意:2lga2=lga1+1+lga4,即a2^2=10a1*a4
(a1*q)^2=10a1*a1*q^3,得q=1/10
a1a2a3=1,即a1*a1q*a1q^2=1,an>0,可求得a1=10
所以an=10*(1/10)^(n-1)=10^(2-n)
(2)bn=1/n(3-lgan),=1/n(3-2+n)=1/n-1/(n+1)
b1=1/1-1/2;
b2=1/2-1/3
b3=1/3-1/4
…………
bn=1/n - 1/(n+1)
Tn=1/1-1/2+1/2-1/3+1/3-1/4+…+1/n - 1/(n+1)
=1-1/(n+1)
1/(n+1)>0
所以Tn