已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB,AP=5,则AQ=______ ∠PAQ=______
问题描述:
已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB,AP=5,则AQ=______ ∠PAQ=______
答
BP=AC BP垂直AC 推出四边形ABCP为菱形 同理推出ABCQ 所以AP=BC=AQ=5 再把图做出来显然有ABC ACP ABQ都是等边三角 所以所求角为180度
答
1、AP=AQ部分
从题目条件看,已经有BP=AC,CQ=AB,另外要求证的是AP=AQ,可见,如果题目正确的话,△APB就全等于△QAC,因此解题的思路之一,就是如何来证明这两个三角形全等.
对△APB和△QAC,现在我们已经有两边相等了,那么一个自然的想法就是看两边夹的角是不是相等.
由于BP垂直AC,CQ垂直AB,那么∠PBA+∠BAC=90度=∠QCA+∠CAB;
所以∠PBA=∠QCA
这样AP=AQ得证.
2、AP垂直AQ部分
从△APB和△QAC全等,可知∠PAB=∠AQC,所以,
∠PAQ=∠PAE+∠EAQ=∠AQE+∠EAQ=∠AEC
又因为CE垂直AB,所以∠PAQ=90度,题目得证